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ABSTRACT: A model based on the concept of fractional
calculus is proposed for the description of the dynamic elas-
tic modulus (E* 5 E0 1 iE00, where E* is the complex modu-
lus, E0 is the storage modulus, or real part of the complex
modulus, and E00 is the loss modulus, or imaginary part of
the complex modulus) under isothermal and isochronal
conditions for amorphous polymers, including both the
glass transition process and the flow behavior. The differen-
tial equations obtained for this model, which we call the
extended fractional Zener model (EFZM), have differential
and/or integral operators of fractional order between 0 and
1. The application of the Fourier transform to the fractional

equation of the EFZM, the association of their parameters to
the relaxation times of the cooperative or noncooperative
molecular movements of polymer chains, and the isother-
mal and isochronal diagrams of E0 and tan d 5 E00/E0 were
evaluated. These theoretical diagrams were typical curves
that clearly showed the glass-transition (a-relaxation) and
flow behavior. The EFZM will enable us to analyze the com-
plex rheological behavior of amorphous polymers. � 2008
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INTRODUCTION

Polymer processing requires a complete understand-
ing of the complex rheological behavior of polymers
in a temperature range from subvitreous tempera-
ture to the terminal flow zone. However, because of
the long-chain character of polymer molecules, poly-
mers are viscoelastic materials with rheological
behaviors characterized by nonexponential relaxation
processes exhibited in numerous experiments, such
as dynamic mechanical analysis (DMA),1–4 dielectric
spectroscopy,1,5–7 quasielastic light scattering,8,9 and
specific heat measurements.1,3,7,10 Relaxation proc-
esses are associated with molecular motions that
lead to a new structural equilibrium with a low
energy content. The process by which the polymeric
macromolecules are rearranged under the applica-
tion of an external force is characteristic of their

structure and morphology; it proceeds at a rate that
increases with temperature. The morphology of these
materials is very complex, which makes them very
difficult to handle analytically. In this sense, the use
of differential and integral operators of fractional
order (fractional calculus) is an alternative.10–17

The goal of this work was the application of frac-
tional calculus to model the complex rheological
behavior of amorphous polymers over a wide temper-
ature range, including both the glass-transition and
flow behaviors (the terminal flow zone). Using this
new fractional model, we can associate the molecular
mobility of polymeric chains to the complex rheologi-
cal behavior of polymers displayed in diagrams of the
storage modulus (E0), or real part of the complex mod-
ulus, and tan d 5 E00/E0. We call this new model the
extended fractional Zener model (EFZM) because it is an
extension of the fractional Zener model (FZM), which
only can describe the glass-transition process.15

APPLICATION OF FRACTIONAL
CALCULUS TO RHEOLOGY

Fractional calculus is the branch of mathematics that
deals with the generalization of integrals and deriva-
tives of all real orders. The application of fractional cal-
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culus to viscoelasticity is based on the fact that the
spring and dashpot elements in the classical rheologi-
cal models (Maxwell, Voigt–Kelvin, Zener, etc.) can be
replaced by a spring-pot element.15–19 The spring
pot15,16 combines the solid behavior (Hooke’s law)
with fluid behavior (Newton’s law) by a differential
operator of fractional order. Equation (1) corresponds
to a spring pot; from this equation, one obtains Hooke’s
law, or spring behavior, when parameter is the frac-
tional order of the derivative of the deformation S with
respect to time (b) 5 0, and when b 5 1, one obtains
Newton’s law, or dashpot behavior (see Fig. 1):

r¼ E1�bhbDb
t S¼ E

h

E

� �b
Db

t S¼ EsbDb
t S 0� b� 1 (1)

where s is the stress, S is the deformation, E is the
elastic modulus, Z is the viscosity, and t 5 Z/E is a
characteristic time called relaxation time, which can
be associated with the time required by segment
chains in motion for a complete reorganization and a
full reorientation to a new structural equilibrium state.
Finally, Db

t S is the fractional derivative of the bth order
of the deformation with respect to time.

It is important to remark here that the nonexpo-
nential relaxation process in polymers implies mem-
ory. A natural way to incorporate such memory
effects is with formulations of noninteger order
derivatives. Equation (2) represents the Riemann–
Lioville derivative used in this work:15–22

Db
tSðtÞ ¼ D

Z t

0

1

Cð1� bÞ
SðyÞds
ðt� yÞb

b 2 ð0; 1Þ (2)

‘‘y’’ is a mathematical variable used in Riemann-Lio-
ville derivative.

The Riemann–Lioville equation is calculated from
eq. (3), which is a fractional integral defined between
0 and time (t); in both eqs. (2) and (3), G is the
gamma function:

D�b
t SðtÞ ¼ D

Z t

0

1

CðbÞ
SðyÞds

ðt� yÞ�bþ1
b 2 ð0;‘Þ (3)

The fractional derivative [eq. (2)] represents a con-
volution integral in which the function S(t) is con-
volved with the impulse-response function of a bth-
order fractional integrator. In this context, for eqs.
(2) and (3), via the involved convolution integral,
this state of the underlying system is influenced by
all states at earlier times. On the other hand, from
the point of view of physics, the fractional order of a
fractional integral [eq. (3)] can be considered like an
indication of the remaining energy of a signal pass-
ing through a viscoelastic material.16–22 In similar
way, the fractional order of a derivative [eq. (2)]
reflects the rate at which a portion of the energy has
been lost in the viscoelastic system.

Several authors have proposed the replacement of
dashpots in rheological classical models with spring
pots to afford an adequate description of relaxation
processes deviating from exponential behavior.15–19

The classical Zener model was modified by Alcout-
labi et al.15 by the replacement of the dashpot by
two spring pots for the modeling of the complex
modulus (E* 5 E0 1 iE00) of an amorphous poly-
mer.13,14 However, this FZM can only describe the
rheological behavior in a frequency (f) or tempera-
ture range that corresponds to the glass-transition
process. In more recent works,17,18 it has been dem-
onstrated that the FZM can be extended to model
the complex rheological behavior of polymers with
both the a-relaxation (glass-transition) and secondary
relaxations (observed at Temperature (T) < Tg,
where Tg is the glass-transition temperature) taken
into account. Nevertheless, the flow behavior was
not included in this model. In the next section, we
describe the FZM that we extend for the modeling of
complex rheological behavior, which includes both
the glass-transition and flow behaviors (at T > Tg).

FZM

Figure 2 shows the FZM and the mathematical
expression for E* calculated from the fractional equa-
tion of the FZM. The first spring pot, a, has charac-
teristically short relaxation times (ta’s) associated
with rheological behavior in the region at high f (or
low temperature). The second spring pot, b, has
characteristically long relaxation times (tb’s) associ-
ated with rheological behavior in the region at low f
(or high temperature), and the springs represent the
elastic behavior of the polymers.15,17,18

Figure 1 Spring-pot element.

732 REYES-MELO ET AL.

Journal of Applied Polymer Science DOI 10.1002/app



E* calculated from the FZM is mainly a function
of the angular frequency (o & 2pf, where f is the fre-
quency in Hz) of the alternating applied strain for
DMA. In DMA, E0 is in phase with the applied
strain, and the loss modulus (E00), or imaginary part
of the complex modulus, is p/2 out of phase with
the strain. The phase lag (d) between the strain and
s is defined as d ¼ tan�1 E00

E0
� �

:
Also, in Figure 2 is shown a scheme of E0 and E00

in the complex plain. These curves, called Cole–
Cole diagrams, enable us to estimate the fractional
orders a and b of the FZM from experimental
results.15–18 In Cole–Cole diagrams, the slope angle
at low values of E0 will be bp/2, and in the region
of high values of E0 the angle will be ap/2. The
Cole–Cole diagrams computed from FZM had clas-
sical asymmetric responses of the glass transition
of polymer materials.15,16 The shapes of these
Cole–Cole curves confirmed the fact that the two
spring-pot elements reproduced the rheological
behavior corresponding to the glass transition at
low and high f values.

Figure 3 shows theoretical diagrams of the f de-
pendence of both E0 and tan d computed from FZM
equations for several values of b and where a
remained constant. At lower and high f values, the f
dependence of E0 and tan d was negligible; at high f
values, E0 � EU (where EU is the unrelaxed modu-
lus), and at low f values, E0 � E0 (where E0 is the
relaxed modulus). The intermediate region between
EU and E0 showed the typical mechanical manifesta-
tion of the glass transition by an increase of E0 when
f increased. This behavior was associated with a
maximum value of tan d, and the shape of the
curves shown in Figure 3 was governed by both
fractional parameters, a and b, as has been widely
explained.15,17,18

Is important to remark here that the relaxation
behavior described by the FZM by the replacement
of the viscous element (dashpot) by two spring pots
(a and b) is a very good approximation of a non-
exponential relaxation process. This relaxation phe-
nomenon correspond to the glass-transition process
(or a-relaxation) of polymeric materials. Neverthe-
less, the secondary relaxations and the flow behavior
cannot be described by the FZM.

In previous works,17,18 we extended the FZM to
model the glass transition (a-relaxation) and the
two secondary relaxations (b and b* relaxations) of
poly(ethylene 2,6 napthalene dicarboxylate). The
model proposed, which is based on three FZMs
arranged in parallel, was called the mechanical frac-
tional model. The first one poses two spring pots, a
and b, associated mainly with a-mechanic relaxa-
tion. The second one has only one spring pot, c,
and it is associated with b*-mechanic relaxation.
The last one also has only one spring pot, d, associ-
ated with the mechanic manifestation of b. These
results show that fractional calculus is a powerful
tool for modeling the glass transition and the two
secondary relaxations of poly(ethylene 2,6 naptha-
lene dicarboxylate); however, the flow behavior was
not taken into account.

It is important to indicate that the FZM (Fig. 2)
describes only the rheological behavior of the glass
transition but is at variance with experimental
behavior of uncrosslinked polymers in the terminal
range, in which flow behavior can be observed at
long times (or low f values). In the next section, we
present the model proposed in this article (extending
the FZM) for the modeling of both the glass-transi-
tion process and the flow behavior for amorphous
polymers. In this work, the secondary relaxations are
not taken into account.

Figure 2 FZM with two spring pots.

Figure 3 f dependence of E0 and tan d 5 E00/E0 described
for the FZM with EU 5 7 3 109 Pa, E0 5 1 3 108 Pa, ta
5 1.0 3 1029 s, tb 5 1.10 3 1029 s, and a 5 0.4.
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EFZM

We added a spring-pot element to the FZM for the
modeling of the glass-transition (a-relaxation) and
flow behavior in amorphous polymers. Figure 4
shows the proposed EFZM, and eq. (4) is the frac-
tional equation of the EFZM. In the EFZM, spring

pot c represents the flow behavior of the polymer,
and spring pots a and b are associated mainly with
the glass-transition process:

EUSþ E0s
�a
a D�a

t Sþ E0s
�b
b D�b

t S ¼ rþ s�a
a D�a

t r

þ s�b
b D�b

t rþ EU

E0
s�c
c D�c

t rþ s�a
a s�c

c D�a�cr

þ s�b
b s�c

c D�b�cr ð4Þ

Equation (4) provides, after Fourier transforma-
tion, E* as a function of f and the parameters ti(T),
where i 5 a, b, or c. The Fourier transform of a frac-
tional operator [Da

t f(t)] can be written as a product of
(io)a and the Fourier transform of the function f(t).15–22

Equation (5) shows E* calculated from eq. (4):

Figure 4 EFZM.

E* ¼ Eu þ Eos�a
a ðixÞ�a þ Eos�b

b ðixÞ�b

1þ s�a
a ðixÞ�a þ s�b

b ðixÞ�b þ EU

E0
s�c
c ðixÞ�c þ s�a

a s�c
c ðixÞ�a�c þ s�b

b s�c
c ðixÞ�b�c

(5)

The mathematical expressions for E0 and E00 can be
obtained from eq. (5).

E0 is calculated as

E0ðxÞ ¼ A1A3 þ A2A4

A2
3 þ A2

4

(6)

where A1, A2, A3, and A4 are defined by the follow-
ing equations:

A1 ¼ Eu þ EoðsaxÞ�acos a
p
2

� �
þ EoðsbxÞ�bcos b

p
2

� �
(7)

A2 ¼ �EoðsaxÞ�asin a
p
2

� �
� EoðsbxÞ�bsin b

p
2

� �
(8)

A3 ¼ 1þ ðsaxÞ�acos a
p
2

� �
þ ðsbxÞ�bcos b

p
2

� �

þ Eu

Eo
ðscxÞ�ccos c

p
2

� �
þ s�a

a s�c
c ðxÞ�a�c cos ðaþ cÞ p

2

� �

þ s�b
b s�c

c ðxÞ�b�ccos ðbþ cÞ p
2

� �
ð9Þ

A4 ¼ �ðsaxÞ�asin a
p
2

� �
� ðsbxÞ�bsin b

p
2

� �
� Eu

Eo
ðscxÞ�c

3 sin c
p
2

� �
� s�a

a s�c
c ðxÞ�a�csin ðaþ cÞ p

2

� �

� s�b
b s�c

c ðxÞ�b�csin ðbþ cÞ p
2

� �
ð10Þ

With eqs. (7)–(10), E00 is defined as

E00ðxÞ ¼ A2A3 � A1A4

A2
3 þ A2

4

(11)

From eqs. (7)–(11), the theoretical diagrams of the
f dependence (isothermal conditions) of E0 and tan d
5 E00/E0 were computed with the consideration that
at a constant temperature, the ti parameters of
EFZM are constants with the following behavior:
tc > tb > ta. The parameter tc is associated with the
long times required to displace molecular chains in
the flow behavior, and tb and ta are the long and
short times, respectively, they are associated with
the molecular mobility in the glass transition as
explained in refs. 15, 17, and 18. To calculate the f
dependence of E0 and tan d, values of a 5 0.4, b
5 0.7, and c 5 0.9 were arbitrarily selected. Figure 5
shows the isothermal diagrams obtained for E0(f)

Figure 5 f dependence of E0 and tan d 5 E00/E0 described
for EFZM with a 5 0.4, b 5 0.7, c 5 0.9, EU 5 7 3 109 Pa,
E0 5 1 3 108 Pa, ta 5 1 3 1029 s, tb 5 1.1 3 1029 s, and
tc 5 1 s.

734 REYES-MELO ET AL.

Journal of Applied Polymer Science DOI 10.1002/app



and tan d versus f. These theoretical diagrams corre-
spond to the typical rheological behavior of an amor-
phous polymer (the glass-transition and flow behav-
iors). It is important to remark here that for semi-
crystalline polymers, the mechanical manifestation of
the crystalline part must be displayed as a second
peak on the tan d diagram. This second peak must
be located between the glass transition and the flow
behavior, and it was not taken into account in this
work.

Figure 5 shows that at high f values, E0 does not
depend on f, and the observed plateau is associated
with the elastic behavior of the polymer; this is simi-
lar to a glassy state in which the polymer is very
stiff and has a very high EU. When f decreases, E0

also decreases; this behavior is maintained until a f
value where a second plateau of E0(f) appears and is
related to rubberlike behavior. This important
decrease in E0 is equal to EU 2 E0 and is associated
with a maximum value on the tan d diagram; this
peak corresponds to the mechanical manifestation of
the glass-transition process. Finally, at very slow f
values, the flow behavior is obtained; in this case E0

presents an important decrease when f decreases.
This rheological behavior corresponds to an impor-
tant increase in tan d.

The mathematical representation of the f depend-
ence of E0 could be obtained by application of the
Fourier transform to the EFZM. In practice, it is
very useful to also describe the analysis of the tem-
perature dependence of E0 and tan d (isochronal
conditions). To obtain the isochronal diagrams of
both E0 and tan d from the EFZM, first it was neces-
sary to define the relationship between t and tem-
perature (T), which in turn, depends on the cooper-
ative or noncooperative nature of the molecular
mobility of polymers. The cooperative molecular
movements are simultaneous motions at a time
of segments of macromolecular chains due to
the interference between neighboring segment
chains.1,17,18 When the temperature decreases, many
segments of chains are involved in the cooperative
process, the probability for this process is small,
and t increases and tends toward an infinite value
to the Kauzmann zero-entropy temperature (T0).
The associated molecular mobility of the glass-tran-
sition (a-relaxation) and flow behavior are typical
examples of cooperative processes.1 The t values
for the cooperative movements verify a power
law:1,15,17,18

s ¼ s0
s
s0

� �Z

T0 � T � T* (12)

where t is the relaxation time of the elementary or
fasted molecular motions of cooperative movements,
and it is defined by an Arrhenius equation:

s ¼ s0 exp
Ea

kBT

� �
(13)

where Ea is the activation energy identifiable with
real energy barriers, which can be different for the
cooperative movements in glass transition and for
the cooperative movements in flow behavior, and kB
is the Boltzmann constant. The term t0 is a pre-expo-
nential factor with values within the range 1016 s
� t0 � 1013 s; values in the vicinity of the upper
limit correspond to molecular vibrational times, and
those near the lower limit may be rationalized as
additional entropy contributions.1,2 In eq. (12), the
parameter Z is associated with the number of ele-
mentary movements participating in the cooperative
process, and it depends on the polymer structure.
The Z exponent is estimated with the next equation:

Z ¼ T

T*

T*� T0

T � T0
T0 � T � T* (14)

The temperature T* is approximately 1.3Tg for
completely amorphous polymers, and it is a cross-
over temperature above which molecular movements
are noncooperative. Z 5 1; in consequence, the t val-
ues follow an Arrhenius law [eq. (13)].

To verify the rheological behavior modeled by
EFZM, in the next section, we proceed to vary sys-
tematically the fractional order of the spring pots for
both isothermal and isochronal conditions. It is im-
portant to point out that the fractional parameters
can only take values between 0 and 1.

TESTING THE RESPONSE OF THE EFZM

Shown in Figure 6 are the predictions of E0 and tan
d under isothermal conditions for different values of
b; the remaining parameters a and c are constants.
Figure 7 shows the correspondent isochronal dia-
grams of E0 and tan d at f 5 10 Hz; in this case, the
temperature dependence of ta, tb, and tc are defined
by eqs. (12)–(14).

Figure 6 shows how both parameters b and a
define the shape of the curves in a f range where the
glass transition is observed. At very high f values,
all curves are superposed because the a parameter is
constant; the same effect is observed at very slow f
values because, in this case, the c parameter, which
defines the flow behavior, is also constant. On the
other hand and also for a f of 10 Hz, we corrobo-
rated the effect of parameter b on the glass transition
in the isochronal diagrams of E0 and tan d; they are
shown in Figure 7. In addition, shown in Figures 6
and 7 are the effects of the parameter b on the shape
of the second plateau of E0 associated with rubber-
like behavior. The decrease in E0(f) when f decreases
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[or the decrease in E0(T) when T increases] is more
pronounced when b increases, and the second pla-
teau associated with rubberlike behavior is greater.
This behavior corresponds to an increase in the peak
amplitude of tan d when b increases. The presence of
this second plateau is related to a critical molecular
weight, above which entanglements exist and the
shape of plateau could be associated with molecular
weight polydispersity of the polymer. In this sense,
Alcoutlabi et al.15 and Friedrich et al.10 used the frac-
tional calculus concepts (spring pots) to compute the
t spectra of polymers that could be related to molec-

ular weight polydispersity. On the other hand, the
curves of Figures 6 and 7 show an equivalence high
f values and low temperatures (or low f values and
high temperatures). This behavior has been identi-
fied from experimental results obtained by
DMA15,17,18 for several polymers.

The parameter b thus affects the minima localized
between the flow behavior and glass transition on
the one hand and the peak amplitude of the glass
transition on tan d diagrams on the other hand.

From Figures 6 and 7, we corroborated that parame-
ters b and a affect mainly the shape of curves in a
region corresponding to the glass-transition process.

Figure 8 shows the effect of the c parameter under
isothermal conditions for the E0 and tan d diagrams;

Figure 7 Effect of the b parameter on the temperature de-
pendence of E0 and tan d with a 5 0.4, c 5 0.9, and the
same values of EU and E0 used in Figure 5. Parameters for
the glass-transition process: tb(T) 5 ta(T), t0 5 1 3 10214 s,
Ea 5 28.95 kJ/mol, T* 5 485 K, and T0 5 323 K. Parame-
ters for the flow behavior: tc(T) t0 5 1 3 10214 s, Ea

5 125.45 kJ/mol, T* 5 485 K, and T0 5 323 K.

Figure 6 Effect of the b parameter on the f dependence of
E0 and tan d with a 5 0.4, c 5 0.9, and the same values of
EU, E0, ta, tb, and tc used in Figure 5.

Figure 8 Effect of the c parameter on the f dependence of
E0 and tan d with a 5 0.4, b 5 0.8, and the same values of
EU, E0, ta, tb, and tc used in Figure 5.

Figure 9 Effect of the c parameter on the temperature de-
pendence of E0 and tan d with the same values of EU and
E0 used in Figure 5. The parameters ta, tb, and tc are
defined in Figure 7.
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in this case, parameters a and b are constants. Figure
9 shows the correspondent isochronal diagrams of E0

and tan d at a f of 10 Hz.
Under isothermal conditions (Fig. 8), the flow

behavior is identified at very low f values by a pro-
nounced decrease in E0 when f decreases, and under
isochronal conditions (Fig. 9) is identified by a pro-
nounced decrease in E0 when the temperature
increases. In both cases, the more pronounced
decrease in E0 was obtained when c 5 1. In this case,
spring pot c describes the rheological behavior of a
dashpot (viscous pure liquid), and when c decreases,
the flow behavior has a tendency to disappear.

In both cases (Figs. 8 and 9), parameter c affects
mainly the rheological behavior of the terminal flow
zone. The decrease in E0 when f decreases or T
increases is related to an increase in tan d under iso-
thermal and isochronal conditions.

In Figures 8 and 9, the curves in the region corre-
sponding to glass transition are superposed because
the a and b parameters remain constant, and we cor-
roborated the equivalence high f values and low
temperatures (or low f values and high tempera-
tures) with the theoretical diagrams of E0 and tan d.
Finally, the theoretical descriptions of the EFZM
were compared with experimental results extracted
from the literature.2 As shown in Figure 10, good
agreement between the model predictions and exper-
imental results was obtained under isothermal con-
ditions (T 5 1008C) for a polystyrene specimen. The
values of fractional parameters used to obtain the
theoretical curves of Figure 10 are c 5 0.98, b 5 0.92,
and a 5 0.33. In future work, we will analyze the ex-
perimental rheological behavior in a f or temperature
range for amorphous polymers showing glass-transi-
tion and flow behaviors. This will enable us to asso-
ciate a molecular interpretation to the fractional
parameters of our EFZM.

CONCLUSIONS

Theoretical diagrams obtained from the fractional
equation of the EFZM describe the complex rheologi-
cal behavior of amorphous polymers and display
typical curves that clearly show the glass-transition
and flow terminal zone.

Choosing in an arbitrary way the values of the frac-
tional orders of the EFZM, we computed for a sinusoi-
dal request E0 and tan d 5 E00/E0 under isothermal
conditions. The isochronal diagrams of E0 and tan d
were computed with the temperature dependence of
the t parameters considered. These theoretical dia-
grams enabled us to analyze the effect of the fractional
parameters for the glass-transition and flow behav-
iors. We corroborated that the a and b parameters are
associated mainly with the glass transition, and pa-
rameter c is associated with the flow behavior.
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